
A Novel Approach to Optimize Clone Refactoring Activity

Salah Bouktif, Giuliano Antoniol and
Ettore Merlo

Départment de Génie Informatique, École
Polytechnique de Montréal

C.P. 6079, succ. Centre-ville Montréal (Québec)
H3C 3A7 Canada

{salah.bouktif,ettore.merlo}@polymtl.ca

Markus Neteler
ITC-irst Istituto Trentino Cultura

Via Sommarive 18 - 38050 Povo (Trento), Italy

neteler@itc.it

ABSTRACT
Achieving a high quality and cost-effective tests is a major concern
for software buyers and sellers. Using tools and integrating tech-
niques to carry out low cost testing are challenging topics for the
testing community. In this work we contribute to alleviate the bur-
den by proposing an architecture support for mutation and coverage
criteria based testing. This architecture integrates metaheuristics to
derivate effective test sets and uses automated tools to speed up test-
ing activities. In this paper, we describe different components of the
testing architecture. We focus on the developed tools performing
mutation testing for JAVA code at method-level and the coverage-
based testing for C code at function-level. The integration of meta-
heuristics in these tools is illustrated by using ant colony and tabu
search to derive optimal and pruned test sets. By using our testing
architecture two cases study to carry out tests respectively for JAVA
methods and C-functions are presented and discussed.

Categories and Subject Descriptors
D [Software]: Miscellaneous; D.2.7 [Software Engineering]: Dis-
tribution, Maintenance, and Enhancement —Restructuring, reverse
engineering, and reengineering

General Terms
Algorithms, Measurement, Experimentation, Design

Keywords
Genetic Algorithms, Multi-objective Optimization, Software qual-
ity improvement, Refactoring effort, Evolution modeling, Effort
prediction.

1. INTRODUCTION
Software quality is the generic term used to represent different

software facets, as perceived by different users from different per-
spectives. From the end-user point of view, usability, reliability,
or accuracy are just a few software characteristics falling under the
general software quality umbrella. Programmer perspective will

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06,July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

likely add other facets such as source code maintainability, evolv-
ability, documentation, and code readability or portability. Regard-
less of the specifically chosen perspective or facet, software quality
depends on an ever changing set of characteristics. Indeed, an in-
trinsic property of software is its malleability, that is its ease of
change and evolution. Changes and evolution characterize the en-
tire life span of any software, from inception to retirement.

Software evolution impacts software quality in many different
ways. As software evolves, very often, documentation is not up-
dated and the source code becomes the only reliable source of in-
formation. People and technologies turnover may also contribute to
create poorly-documented and gray code areas, that are essentially
no longer known or maintained. Software evolution and mainte-
nance, sometimes, are carried out in non-disciplined way. As a re-
sult, software structure, software architecture and, in general, soft-
ware quality tend to deteriorate. Often, a system was originally
conceived as a single platform application, with a limited num-
ber of functionalities and supported devices. Then, it evolved by
adding new functionalities and was ported on new product fami-
lies by adding new devices or target platforms. When writing a
device driver or porting an existing application to a new proces-
sor, developers may decide to copy an entire working subsystem
and to modify the code to cope with the new hardware. This ap-
proach increases the chances that programmers’ work will not have
any unplanned effect on the original piece of code they have just
copied. However, this evolving practice promotes the appearing of
duplicated code snippets, also saidclones.

GRASS, Geographic Resources Analysis Support System, com-
monly referred to as GRASS GIS, is a Geographic Information Sys-
tem (GIS) used for data management, image processing, graphics
production, spatial modeling, and visualization of many types of
data. GRASS is mostly written in C; early releases date back to
1982 in other words, it is old enough to expose the above outlined
evolution phenomena. GRASS underwent and is undergoing ma-
jor evolutions. Initially developed under Unixes, it was also ported
under MS-Windows. GRASS early releases were limited to 2-D,
more recent releases added sophisticated 3-D capabilities and many
other new features, that were not available in previous releases.

Recently, the GRASS development team started rationalization
and redesign actions with the long term goal to improve software
structure, modularity and more generally software quality. As part
of this goal several key actions were identified. Old Kernighan and
Ritchie (K&R) C code will be replaced by ANSI style code; code
duplication, perceived as poor design, have to be minimized; cou-
pling between functions reduced and function cohesion improved.
Old undocumented gray code areas should be revised, possibly, ar-
chitecture organization improved so that new developers and main-
tainers could pick up responsibility for that sections of code.

1885

In the literature, there are many papers proposing various meth-
ods for identifying similar code fragments or components in a soft-
ware system [3, 4, 5, 17, 20, 21, 22]. However, in the best of the
authors’ knowledge, no effort model, no process, and no method-
ology to improve quality while carrying out clone refactoring has
ever been presented. For a medium or large software system, qual-
ity improvement and clone refactoring are difficult and challenging
tasks. A suitable order of refactoring actions have to be identi-
fied, but, refactoring deals with software architectural and design
restructuring. Overall software functionalities must not be affected;
effort has to be minimized while quality improvement should be
maximized.

This paper proposes to adopt metaheuristic approaches, to sched-
ule quality improvement under constraints and priority. GRASS is
an open source, freely available software; development and evolu-
tion are carried out on voluntary basis. However, GRASS develop-
ment is organized with weekly snapshots. At the end of each week,
a new working snapshot has to be released. At the time of writ-
ing, GRASS contains about 8000 functions; out of which there are
about 1000 duplicated and 800 old style K&R functions. Priority
should be given to remove duplicate, large, complex, non cohesive
K&R functions. Certain sub-system, has to be privileged while
other code regions have not to be considered in the current phase.
Refactoring actions should be organized into work-packages (WP),
so that each WP can be carried out leaving GRASS weekly release
in a consistent and fully functional status. Sub-sets of GRASS
functions, including the mentioned about 1000 clones, need to be
organized into WPs; any WP, subset of functions, constitutes a so-
lution to our problem. In the essence the solution space is huge, for
example, searching a subset of clones to be removed means iden-
tifying a subset of the 1000 duplicated functions. Unfortunately,
there are about21000 possible subsets. Furthermore, constraints on
effort, pressure to increase quality in a shortest possible time frame
and priorities, as expressed by developers, have also to be dealt
with.

It is well known that in several fields, such as graph theory, ar-
tificial intelligence, and pattern recognition, heuristics and oppor-
tunistic strategies often allow to reduce the average case complexity
when linear solution exists for specific sub-problems. Indeed, the
exact solution may not be computational feasible, whereas approx-
imated solutions with low complexity or almost linear complexity
may ensure scalability at the price of slightly reducing the result
optimality. Given the above outlined constraints we re-formulated
the quality schedule improvement, under constraint and priority, as
an M-dimensional Knapsack problem. The problem was solved
via Genetic Algorithms (GAs) and quality improvement was ef-
fectively scheduled by identifying near optimal clone removal ac-
tions, set of functions organized into WP. At each week several
suitable WP were identified and proposed to GRASS developers;
each WP was consistent with available effort and GRASS weekly
release strategy while maximizing quality improvement.

The main contribution and novelty of this paper are as follows:

• we propose to solve our schedule quality improvement un-
der constraints and priority as a multi-constrained Knapsack
problem;

• we model our clone refactoring actions in term of the sched-
ule quality improvement problem; and

• we propose a novel model to estimate the effort needed for
clone refactoring.

The remainder of the paper is organized as follows: Section 2
summarizes previous work; Section 3 presents our problem formu-

lation; the approach i.e., the GA solution to the quality improving
problem is presented in Section 4 while GRASS case study is de-
tailed in Section 5, Section 6 draws conclusions and outline future
work.

2. RELATED WORK
An application of search–based techniques to project schedul-

ing was done by Davis [10]. A survey of the application of GAs to
solve scheduling problems has been presented by Hart et al. in [16].
The mathematical problem encountered is, as described by the au-
thor, the classical, NP-hard, bin packing or shop-bag problem. A
survey of approximated approaches for the bin packing problem is
presented in [9]. More recently Falkenauer published a book de-
voted to the GA and grouping problems [11]. The theme of the
book and the proposed genome encoding are highly relevant to the
problem addressed in this paper. Schema interpretation and bin
packing genome encoding described in the book were a source of
inspiration, although our problem is slightly different. Our problem
requires to consider both the work that can be done and, at the same
time, the highest possible quality improvement. Therefore, the or-
der on which WPs are presented to the teams is relevant, whereas
bin packing doesn’t impose a packing order to reach an optimum.

Search heuristics have been applied in the past to solve some
related software project management problems. In particular, Kir-
sopp et al. [19] reported a comparison of random search, hill climb-
ing, and forward sequential selection to select the optimal set of
project attributes to use in a search–based approach to estimating
project effort.

A comparison of approaches (both analytical and evolutionary)
for prioritizing software requirements is proposed in [18], while
Greer and Ruhe proposed a GA-based approach for planning soft-
ware releases [15]. Clark et al. [8] argued a great potential for the
exploitation of metaheuristics within software engineering, partic-
ularly, in the areas of test data generation, module clustering and
cost/effort prediction.

Commonalities can also be found with the work of Antoniol et
al. [1]. This work focuses on problem of staffing a software main-
tenance project using queuing networks and discrete-event simu-
lation. Given an (ordered) distribution of incoming maintenance
requests, the goal of Antoniol et al. was to determine the staffing
levels for each team.

The present paper has some substantial differences from previ-
ous works. We propose an effort model for clone detection refac-
toring and we incorporate constraints and priorities into our refac-
toring problem formulation.

3. PROBLEM FORMULATION
Applications based on GAs revealed their effectiveness in find-

ing approximate solutions, when the search space is large or com-
plex, when mathematical analysis or traditional methods are not
available, and, in general, when the problem to be solved is NP-
complete or NP-hard [13]. Roughly speaking, a GA may be de-
fined as an iterative procedure that searches for the best solution of
a given problem among a population, represented by a finite string
of symbols, thegenome. The search is made starting from an initial
and often randomly generated population of individuals. At each
evolutionary step, individuals are evaluated using afitness func-
tion. High-fitness individuals will have the highest probability to
reproduce themselves.

The evolution (i.e., the generation of a new population) is made
by means of two kinds of operator: thecrossover operatorand
themutation operator. The crossover operator takes two individu-

1886

als (theparents) of the old generation and exchanges parts of their
genomes, producing one or more new individuals (theoffspring).
The mutation operator has been introduced to prevent convergence
to local optima; it randomly modifies an individual’s genome, for
example, by flipping some of its bits, if the genome is represented
by a bit string. Crossover and mutation are respectively performed
on each individual of the population with probabilitypcrossand
pmutrespectively, wherepmut� pcross.

GAs are not guaranteed to converge. The termination condition
is often based on a maximum number of generations, on a given
value of the fitness function or, also, on a maximum number of
generations, without fitness improvement.

In this paper we focus on a general problem of how to pro-
mote software quality improvement, while performing evolution
and maintenance activities. More precisely, while performing per-
fective maintenance actions, we would like to select candidate func-
tions to maximize the quality gain under the constraint of a limited
amount of available resources i.e., effort.

3.1 Constrained Knapsack Problem
Let S be a software system andF a set ofn problematicfunc-

tions inS (e.g., set of duplicated functions). Each function inF
is described by a set of metrics (e.g., size, cyclomatic complexity,
cohesion, coupling) and a level of priority. The higher the priority
the higher will be the probability that the function is selected and
actually refactored.

The goal is to find the mostvaluablesubset of functions inF ; a
subset that when refactored the maximum quality gain is obtained,
while it consumes the minimum of resources. More precisely, the
goal is to the maximize the quality improvement, in a given pe-
riod of time, with an effort not exceeding the maximum amount of
available resources. Given this general goal, our problem can be
thought of as aConstrained Knapsack Problem(KP) [25], which
can be standardly formulated as follows:

maximize f(x1, . . . , xn) =

nX
j=1

pjxj , (1)

subject to Ct :

nX
j=1

wjxj ≤ b, (2)

xj ∈ {0, 1}; j = 1, . . . , n; pj > 0; wj > 0 andb > 0

In this formulation, the KP items are theproblematicfunctions
(j = 1, . . . , n), the item profitpj is the estimated quality gain,
when thejth function is refactored, and the item weightwj cor-
responds to the effort needed to carry out source code modifica-
tion. The objective functionf(x1, . . . , xn) is expressed as the 0-1
weighted sum of profits; each variablexj ∈ {0, 1} decides if the
jth function is included into the subset of functions to be refac-
tored. This is a maximization problem under the constraintCt

calledEffort constraint; this constraint states that the effort needed
should not exceed a maximum amountEmax.

Since we are particularly interested in the problem of duplicate
code removal, i.e., clone elimination, a second constraint must be
considered. We call itGrouping constraint. Functions are grouped
into clusters according to some distance measures. Each clusterCk

contains functions, i.e., clonescj , with relative distance below a
given threshold. For a threshold value of zero, clusters will con-
tain functions that are exact copies. Details on clone detection and
function clustering are beyond the scope of this paper, more details
can be found in [2, 17, 20, 21, 22, 23]. TheGrouping constraint

states that if a clonecj in a clusterCk belongs to the maximiza-
tion problem solution, then all the functions inCk should be in the
same solution. This corresponds to an underlying assumption that
refactoring effort is composed by two main parts. A first activity
is needed to study the system, clones in the cluster, interactions
between calling functions and clones, and the overall software ar-
chitecture. Once performed this program understanding task, the
actual incremental cost to remove a single clone of the same clus-
ter is only a fraction of the overall cost. Thus it pays off to get
rid of all clones in a cluster, if just one single function is selected.
Note that after refactoring, only one function will surrogate all the
cluster clones.

With respect to the quality improvement, we are interested in the
modularity of the design, which is often expressed in term of cou-
pling and cohesion measures. Our strategy tries to select as refac-
toring candidates, clones with weak cohesion and strong coupling
(low modularity). In other words, since clones with low cohesion
and high coupling will be eliminated, the overall quality ofS will
be improved, because we will improved the quality ofF , which
are subset of functions composing the system. Consequently, the
problem is a multi-objective problem with two objective functions.
While the total cohesion of the selected clones is minimized (or to-
tal lack of cohesion maximized), the total coupling of them must
be maximized.

In addition to the quality improvement of the systemS, we have
also to consider, for each function, a level of refactoring priority ex-
pressed by expert’ desires. For example, as a priority, the experts of
GRASS maintenance suggested to get rid of the old Kernighan and
Ritchie style code, of large functions, and of functions with high
cyclomatic complexity. Expert opinion was modeled by a third ob-
jective function to be maximized, which would measure the total
priority of problem solution.

Overall, the above consideration motivate why our Knapsack
problem is in reality Multi-constrained (MKP) and Multi-objective
(MOKP). A problem with only one of these two qualifications is
known to be an NP-complete combinatorial optimization problem.
Our tailored problem formulation is the following:

max
x1,...,xn

f1(x1, . . . , xn) = max
x1,...,xn

nX
j=1

Lcoh(cj)xj , (3)

max
x1,...,xn

f2(x1, . . . , xn) = max
x1,...,xn

nX
j=1

Coup(cj)xj , (4)

max
x1,...,xn

f3(x1, . . . , xn) = max
x1,...,xn

nX
j=1

Prio(cj)xj , (5)

subject to Ct1 :

nX
j=1

e(cj)xj ≤ Emax, (6)

Ct2 : cj ∈ Ck|xj = 1⇒ ∀ci ∈ Ck : xi = 1 (7)

In the above equations, the functionLcoh(cj) is a measure of a lack
of cohesion within a clonecj ; Coup(cj) measures the in and out
coupling between a clonecj and the other functions ofS; Prio(cj)
is a priority refactoring level of a clonecj ; e(cj) is the effort re-
quired to refactorcj andEmax is the maximum amount of effort
provided by the available resources for the refactoring activity. In
the best of authors’ knowledge, no previous contribution published
an effort model for clone refactoring problems. In the following
paragraphs, we will introduce our novel effort model.

1887

As a first level of approximation, we distinguish between two
types of clones:

1. Perfect clones: clones which are syntactically and semanti-
cally identical; they are pure replicas of the same lines of
code, but indentation; and

2. Near-duplicatedclones: clones with some different tokens;
they are, for example, code fragments in which a variable has
consistently been changed throughout the code.

3.2 Clone Refactoring Effort Model
The effort required to refactor clones is modeled by the four

following components: system understanding, clone modification,
called context understanding, and calling context adaptation effort.

System understanding effort takes into account the time needed
to carry out basic program comprehension actions such as locat-
ing the clone, studying software architecture, and deciding which
clones to eliminate. We represent this effort as asystemlevel ef-
fort, which is denotedes and which is defined as the average effort
required before starting the actual refactoring actions.

Clone modification effort represents the effort needed to modify
the necessary tokens in the source code. This term is formulated
as:

e0 ·DToken(cj)

wheree0 is an average estimated effort for one generic source code
change andDToken(cj) is the number of different tokens incj to
be changed.

Called context understanding effort expresses the effort required
to understand the contexts of the functions called by the clonecj

and, possibly, the code of functions that can be reached from the
clone viacaller-calleerelation. It is a function of the size of clone
cj (LOC(cj)) and of the size of thereachedcodeRLOC(cj) from
cj . RLOC(cj) is the overall size measured as LOC of the func-
tions reached from the clone viacaller-calleerelation. This term is
formulated as:

µ · e0 · (LOC(cj) + RLOC(cj))

We assume that the estimated average effort to understand one
line of code beµ times higher than the effort required for one
generic source code change.

Calling context adaptation effort represents the effort required
to adapt the calling contexts of the modified clones. Adaptation
may involve, for example, include files, makefile, or call sites. We
assume that the calling context adaptation effort be proportional to
the number of functions directly calling the clonescj and that one
generic source code change is performed per calling function. This
term is formulated as:

e0 · Calling(cj)

whereCalling(cj) is the number of calling functions.
Therefore, the overall efforte(cj) required to refactor a clonecj

is expressed as:
8>>><
>>>:

es + e0 · Calling(cj) if cj is a perfect Clone

es + e0 · (DToken(cj) + Calling(cj))

+ µ · e0 · (LOC(cj) + RLOC(cj)) otherwise
(8)

As a general rule, any predictive has to be calibrated, i.e., model
parameters have to be adjusted to the given organization, process,

domain, and so forth. Clearly, to adapt our model to a particu-
lar context or a given organization, three parameters must be esti-
mated: effortes, e0 and the multiplicative coefficientµ.

4. A GA SOLUTION TO THE QUALITY IM-
PROVING PROBLEM

The application of search-based techniques needs a preliminary
step in which we define some key ingredients. In particular, to
design a genetic algorithm for any specific problem, the following
elements are needed:

• a chromosome representation to describe the solutions;

• mutation and crossover operators; and

• a fitness function to guide the search.

Since, the quality schedule problem was reduced to a Knapsack
problem (Section 3), in the following paragraphs we will describe
how we customize the Knapsack problem i.e., chromosome repre-
sentation, genetic operator implementation, initial population con-
struction as well as fitness function and constraints implementation.

4.1 Clone Knapsack representation
A simple way to encode our Knapsack problem is to represent

the inclusion or exclusion of each of then problematicfunctions by
a bit in a bit string of lengthn. Thejth bit contains the value of the
decision variablexj . Figure 1 illustrates the binary representation
of the Knapsack chromosome.

1 2 3 4 5 6 7 8 9 ... n -1 n
1 00 0 01 0 ...01 01

Figure 1: Binary representation of the clone Knapsack solu-
tion.

A chromosome encoding may represent an infeasible solution.
An infeasible solution is a solution for which at least one of the
problem constraints is violated. In our case, an infeasible solution
is encountered when the total effort needed exceeds the maximum
effort or when not all functions of a clone cluster are included in
the Knapsack. According to the literature, handling violations can
be done in the following ways:

• by using a representation that automatically preserves solu-
tion feasibility [6];

• by applying a penalty method to penalize the fitness of any
infeasible solution [14]; and

• by defining a repair operator that transforms infeasible solu-
tions into feasible ones [7].

Clone grouping constraint imposes that if a clonecj belonging
to a clusterCk is selected then, all the functions contained inCk

must be in Knapsack too. The easiest way to handle this constraint
is to use a different bit string encoding in which a bit will repre-
sent the inclusion or exclusion of an entire cluster out of theNc

clusters. This representation (Nc-bit string) will be used during the
search process in particular by the genetic operators. Solutions are
then mapped back into the initial representation (n-bit string) via
straightforward one-to-one mapping.

With respect to the effort constraint, a Knapsack solution that
needs more effort thanEmax has to be transformed to lower the

1888

needed resources. This strategy is more recommended in the litera-
ture than the approaches based on penalty method, specially when
the optimization problem is multi-objective. Of course, a repair op-
erator is needed to transform infeasible Knapsack into feasible ones
(see Section 4.3).

4.2 Crossover and mutation operators
Since the chromosome representation that we adopted for the

Knapsack problem is a bit string, several choices are possible to
perform the crossover and the mutation. We adopted two ways to
perform crossover. The first is the standard crossover with two cut
points: two parent chromosomes (P1 andP2) are selected accord-
ing to their fitness function values. Two substrings (SS1 andSS2),
having the same length and beginning at the same position, are ex-
tracted respectively, fromP1 andP2. ThenSS1 takes the place of
SS2 in P2 and vice versa forSS2 to obtain two offspringO1 and
O2.

The crossover operator adopted is the uniform crossover in which
two parent chromosomes give birth to a single offspring. Each bit
of the offspring is copied from one of the parent. For each offspring
position, a binary random number is generated. If this number is0,
thejth bit of the offspring is a copy of thejth bit in the first parent.
If it is equal to1 the bit is copied from the second parent.

Once the offspring are generated by the standard or the uniform
crossover, a mutation operator is applied. The mutation consists in
complementing a small number of bits equivalent in size to roughly
2 or 3% of the string length, by changing them from0 to 1 and vice
versa.

4.3 Repair operator
This operator is mainly needed to ensure feasible solution under

the effort constraint. The offspring generated by the crossover and
mutation may violate the effort constraint. In order to make all the
offspring feasible, we developed a greedy algorithm inspired by the
works of Raidl [25] and of Chu and Beasley [7].

REPAIRKNAPSACK(S)
1 ArrangeS by respecting an ascending order ofqpk ratios
2 E ←

PNc
k=1 e(Ck)S[k]

3 j ← 0 . Considering the lowestqpk

4 while (E > MaxE and k < Nc) do
5 if (S[k] == 1) then
6 S[k]← 0
7 E ← E − e(Ck)
8 end if
9 k ← k + 1

10 end do
11 k ← Nc . Considering the highestqpk

12 while (E + e(Ck)S[k] < MaxE and k > Nc) do
13 if (S[k] == 0) then
14 S[k]← 1
15 E ← E + e(Ck)
16 end if
17 k ← k − 1
18 end do
19 SFEASIBLE← S
20 return SFEASIBLE

Figure 2: Summary of Repair operator algorithm.

The general idea is to use the notion of pseudo-utility ratios for
the Knapsack. Since we are handling only one constraint in this

algorithm, a pseudo-utility ratio for a clone clusterCk is defined

as qpk =
q(Ck)

e(Ck)
, whereq(Ck) is quality gain associated toCk

ande(Ck) is the effort needed to eliminate the clones inCk. We
call this ratioquality-price ratio. Once the quality-price ratios are
calculated for each variablexj , the repair process consists of two
steps. The first step checks the decision variables in ascending or-
der ofqpk ’s and mutates them from1 to 0, if the feasibility is still
violated. As result, the variables with lowest quality-price ratio
are being considered first and the corresponding clone clusters are
removed from the Knapsack. The second step examines the the
decision variables in descending order ofqpk ’s and mutates them
from 0 to 1 as long as the feasibility is not violated. As result, the
variables with highest quality-price ratio are being considered first
and the corresponding clone clusters are added to the Knapsack
while the feasibility is not violated. Figure 2 summarizes the repair
operator.

4.4 Initial Population
Two objectives have to be pursued when constructing the initial

population: individuals must be diversified and must represent fea-
sible solutions. Using the bit string representation, the inclusion
and the exclusion (decision variablexk) of a randomly selected
clone clusterCk is decided in the following way. First, a binary
number is randomly generated. If the number is equal to one, the
selected clone cluster is added to the solution, if this one remains
feasible. This process continues until no clone cluster can be added
without violatingEmax. The construction of the initial population
is shown in the algorithm of Figure 3.

INITIAL POPULATION(PSize)
1 for k ← 1 to Nc do S[k]← 0 end do
2 E ← 0
3 for k ← 1 to PSize do
4 Sk ← S
5 R← k . R is a set of non examined ranks
6 select randomlyj from R
7 R← R− {k}
8 while (E + e(Ck) < MaxE) do
9 Sk[k]← 1

10 E ← E + e(Ck)
11 select randomlyk from R
12 R← R− {k}
13 end do
14 end do

Figure 3: Algorithm of Initial Population Construction, PSize

is its size .

4.5 Fitness function and selection methods
In single-objective optimization problems using a GA fitness func-

tion and objective function are often identical. However in Multi-
objective Optimization Problems (MOP), fitness assignment and
consequently the selection operation must take into account multi-
criteria of optimization. Basically, three strategies dealing with
MOP resolution are reported and used in the literature [27]:
Aggregation-based, criterion-based, and Pareto-based strategies.
These three strategies propose different approaches of fitness as-
signment and individual selection. In the remainder of this section,
we summarize the three strategies devoting more details to the one
adopted in this paper: the aggregation-based strategy.

1889

Aggregation-based strategy central idea is to transform MOP
into a single-objective problem. The different objective functions
fi of the problem are combined into a single functionF with an
affine transformation:

F (x) =

TX
i=1

λifi(x),

wherex is a solution, the weightsλi ∈ [0, 1] and
PT

i=1 λi = 1
andT is the number ob objectives of the MOP. The derived solu-
tions by linear aggregation method for the MOP strongly depend
on the choice of theλ vector. The weightsλi are recommended to
be chosen according to some preferences associated to the objec-
tives [27];λi selection is a trial-and-error process. Thus, in general,
the problem is solved several times with differentλ vectors and the
best values are chosen using some evaluation criteria such as, for
example, speed of convergence, sub-optimality of solution, and so
forth. If the different objective are not commensurable, they can be
brought in the same range by the following equation:

F (x) =

TX
i=1

βiλifi(x), (9)

whereβi are constants initialized generally to
1

fi(x∗)
andfi(x

∗)

is the optimal solution according to theith objective. Several blind
strategies are used to generate randomly the weightsλi as follows:

λi =
randomi

random1 + . . . + randomT .
(10)

Using the aggregation-based method, the fitness function of our GA
for MKP is defined by the equation 11.

F (x1, . . . , xn) = β1λ1

nX
j=1

Lcoh(cj)xj (11)

+ β2λ2

nX
j=1

Coup(cj)xj

+ β3λ3

nX
j=1

Prio(cj)xj

whereλ1, λ2 andλ3 are generated by applying three times equa-
tion 10, with:

T = 3

β1 =
1

nX
j=1

Lcoh(cj)

β2 =
1

nX
j=1

Coup(cj)

β3 =
1

nX
j=1

Prio(cj)

(12)

Here, the denominators take the respective values of the objective
functions whenxj = 1∀j = 1, . . . , n.

With the aggregation based method, individual selection is per-
formed via methods like theRoulette Wheel Selection, the Rank

Selection, or theSteady-State Selection[12]. Having no particu-
lar reason to prefer one approach over the other, in this paper, in-
dividual selection was performed by applying theRoulette Wheel
Selectionmethod.

Criterion-based methods are founded on the idea of switching
between the objectives, during the selection phase. Each selection
of an individual is potentially based on a different objective. The
set of selected individuals contains in our case three sub-sets, por-
tions or fractions. Each sub-set contains the ”fittest” individuals,
according to a different objective function. Some researchers, for
example, propose to constitute equal portions [26].

Pareto-based methods are based on computing the fitness values
by using Pareto dominance [14]. The idea is to exploit the partial
order on the population. The most known way of such fitness calcu-
lating are referred as ranking methods like Non-dominated Sorting
Genetic Algorithm (NSGA), Non Dominated Sorting (NDS), and
Weighted Average Ranking (WAR). For example, NSGA, proposed
initially by Goldberg [14], assigns the rank1 to all the non domi-
nated individuals. In a maximization problem, a solution (individ-
ual)s1 dominates a solutions2 iff ∀i ∈ [1..T]fi(s1) ≥ fi(s2) and
∃i ∈ [1..T]|fi(s1) > fi(s2). Then, these individuals are removed
from the population; the next new non dominated individuals are
identified and the rank2 is assigned to them. The process contin-
ues until all the population individuals are ranked. Afterward, the
probability of an individual to be selected is computed on basis of
its rank. More detail about the others methods can be found in [27].

5. CASE STUDY
As mentioned in the introduction, refactoring has been performed

to GRASS, which is a large open source GIS. In particular, the
GRASS6.1-CVS development snapshot of December 5, 20051 was
used as a case study. Its characteristics are summarized in Ta-
ble 1. GRASSmodules correspond to applications and represent
commands. Applications are organized by name, based on their
functionality group such as map display, general file operations,
image processing, raster, vector operations, etc. The first letter of a
module name refers to a functionality group and is followed by one
dot and one or two other dot-separated words, which describe spe-
cific tasks. AllGRASSmodules are linked with an internal parser. If
there are no command-line arguments entered by a user, the parser
calls a Tcl/TK based graphical user interface, for an interactive ver-
sion of a command. Otherwise, it will start the command-line ver-
sion. Code parameters and flags are defined within each module.
They are used to ask user to define map names and other options.
GRASSprovides an ANSI C language API with nearly one thou-

Directories 541
C Files 2486
Header Files 591
C KLOC 510
Libraries 45
Applications 580
Functions 8054
K&R Functions 820
Perfect Clones 274
Near Duplicated Clones 720

Table 1: GRASS 6.1-CVS key characteristics (Dec 5, 2005).

sand of GIS functions, which are used byGRASSmodules to read
and write maps, to compute areas and distances for georeferenced
data and to visualize attributes and maps. Details ofGRASSpro-
gramming are covered in [24].
1Downloadable fromhttp://grass.itc.it

1890

This programming API is organized in about forty libraries, and
higher priority was given to eliminate old style K&R functions and
to refactor clones. Details on number of function, number of K&R
functions and clones are summarized in Table 1.

The process to determine model constants was perceived as cru-
cial to produce a meaningful quality improvement planning. More-
over, although GRASS quality improvement is priority, the reliable
organization of refactoring activity into WPs compatible with the
current GRASS development practice was perceived as essential to
obtain programmers’ cooperation and support. Perfect clones are a
special case of near duplicated clones and they have been the target
of model calibration, since the effort to refactor them is lower than
that needed to refactor near duplicated clones.

Model tuning was thus organized into the following sub-steps:

• Initial subjective model constant determination;

• Qualitative result assessment; and

• Preliminary constant recalibration.

Initial subjective constant determination was carried out via a
consensus based approach. Three software engineers knowledge-
able of refactoring, and C programming idioms were asked to reach
a consensus ones ande0 values.

Once a consensus was reached, a qualitative assessment was
done. This step aimed at verifying that no major error in constant
value guessing was made. Values were used in the effort model to
produce via GA two sets of ten WPs. For the first setEmax was
fixed at one hour and thus the overall estimated refactoring effort
for each WP was of about one hour. The second set contained, the
same number of WPs, but for groups of clones requiring a refac-
toring activity of about two hours. Two GRASS developers were
asked to qualitatively assess the WPs. More precisely they were
asked to judge, in their best knowledge, how long it would have
been taken to refactor one randomly chosen WP in each of the two
sets. They were also asked to quantify the average expected ratio
of the time requires in the two cases. GRASS developers were nei-
ther aware of the effort model, nor of the imposed differentEmax

values. Qualitative results substantially confirmedes ande0 initial
values.

GRASS developers were asked to provide guidelines to set up
GA priority constraints. Discussion lead to the decision to sep-
arate the problem of K&R codeansificationfrom the more long
term quality improvement goal. Unfortunately public domainansi-
fication tools don’t provide an accurate code transformation. Thus
we developed our ownansificationtoolkit; information collected
while parsing C code on K&R function location is very accurate
and it was used to perform precise (including saving comment po-
sition) and semantic preserving code transformation. The overall
time required in the process was of about six hours of an expert
in parsing and code transformation and eight hours of an expert
GRASS programmer. Out of the six hours, about five were needed
to develop theansificationscript. Ansificationwas performed on
a per-directory basis; GRASS developer time was needed to semi-
automatically verify performed transformations, to recompile the
system, perform basic tests, and commit changes in the central CVS
repository. In summary, all 820 K&R functions were translated into
ANSI style in less than two working days. At the time of writing,
no error has been discovered related to such a major change. It is
however worth noticing the relation with quality issues: in K&R
style function parameter declaration, at function definition, is op-
tional. Indeed out of the 820 functions about 20 had undeclared
parameters; most of these dangerous missing declarations were un-
known to developers. The type of these parameters is assumed by

the compiler, however, there is no guarantee on assumptions made
by different compilers, thus the simple rebuild of an application
with different compiler may lead crashes or, in the worst scenario,
to undetected data corruption.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10
Period (week)

Q
ua

lit
y

im
pr

ov
em

en
t(

%
)

0
10
20
30
40
50
60
70
80
90
100

R
em

ai
ni

ng
 c

lo
ne

s(
%

)

Remaining clones

Quality improvement

Figure 4: Planned quality improvement.

GRASS developers set up priority on a code region perceived
as critical. Moreover, preference was expressed to start with the
largest and more complex function. Complexity was in turn repre-
sented as number of parameter and cyclomatic complexity. These
new priority values together with the selected model parameter val-
ues were then used exactly as above to produce two new sets of
WPs different in term of involved functions from the previous one.
The same GRASS developers were asked to randomly select one
WP and to perform the actual refactoring, while recording effort
data.

As already underlined, effort data for the GRASS case study
are needed to ensure that the refactoring effort will be compatible
with the GRASS development process and will not interfere with
GRASS planned milestones. Empirical observation demonstrated
an optimist attitude of people involved in the project. Guessed data
were not substantially different. Nevertheless, reported data for the
two programmers, were about 25 % higher. Two WPs of one hour
requires about 75 and 76 minutes respectively; out of this time in
both cases about 15 minutes were needed to initially study the task.
Collected data were fed into a recalibration algorithm to updatees

ande0 estimates. Effort to refactor near duplicated clones was as-
sumed as being three fold higher than the effort required for perfect
clones, i.e.µ value was set to three. With these estimated values,
simulations to schedule and study quality improvement were car-
ried out on a ten weeks temporal horizon. Figure 4 reports data ob-
tained out of five simulations. Data points are quite closed together
so that it is difficult to distinguish one from the other. Notice also
that there are274 perfect clones in the system. Therefore, under
the assumption of an available effort corresponding to one GRASS
developer working full time on refactoring, i.e.,Emax equal to 40
hours, the first month of activity is substantially devoted to remov-
ing most of these clones.

Clearly, new data and new empirical evidence are needed to ver-
ify our conjecture thatµ has an approximate value of three. New
data will also help us to better calibrate the model and to quan-
tify model accuracy. Our preliminary results are very encouraging.
However it pays to be cautious in that only a few data points were
available to calibrate the model. Furthermore, the open source na-

1891

ture of the GRASS project and the GRASS programmers’ moti-
vations and skills may or may not be similar to other open source
projects or to other industrial development environments.

6. CONCLUSION
We have presented how a general problem to schedule quality

improvement under constraint and priority can be solved via meta-
heuristic search. We reported how the problem can be instantiated
into an approach to schedule refactoring actions aiming at remov-
ing duplicated code under constraints and priorities.

By working in tight contact with the GRASS development team,
we were able to obtain a first tuning of the effort model parameters
and, thus, to effectively provide people with WPs, which are sets
of functions to be refactored, that maximized quality improvement
under imposed constraints. WPs were identified via GAs. Presently
work is undergoing to apply refactoring actions to the GRASS sys-
tem. Priority in this early phase was given to eliminate K&R code
and large non cohesive exactly duplicated functions. In the paper,
simulation was carried out and reported to better understand the
time frame under which clone removal will take place.

Future work will be devoted to better calibrate constant para-
meters of the effort model, to incorporate library structure into the
quality schedule problem, and to provide a detailed taxonomy of
clones so that semi-automatic clone removal will be feasible.

7. ACKNOWLEDGMENTS
This research was partially supported by the Natural Sciences

and Engineering Research Council of Canada (Research Chair in
Software Evolution #950-202658).

8. REFERENCES
[1] G. Antoniol, A. Cimitile, G. A. Di Lucca, and M. Di Penta.

Assessing staffing needs for a software maintenance project
through queuing simulation.IEEE Transactions on Software
Engineering, 30(1):43–58, Jan 2004.

[2] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta.
Analyzing cloning evolution in the linux kernel.Information
and Software Technology, 44:755–765, October 2002.

[3] B. S. Baker. On finding duplication and near-duplication in
large software systems. InProceedings of IEEE Working
Conference on Reverse Engineering, July 1995.

[4] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. InProceedings
of IEEE International Conference on Software Maintenance,
pages 368–377, 1998.

[5] E. Buss, R. D. Mori, W. Gentleman, J. Henshaw, H. Johnson,
K. Kontogiannis, E. Merlo, H. Muller, J. M. S. Paul,
A. Prakash, M. Stanley, S. Tilley, J. Troster, and K. Wong.
Investigating reverse engineeering technologies for the CAS
program understanding project.IBM Systems Journal,
33(3):477–500, 1994.

[6] P. C. Chu and J. E. Beasley. Constraint handling in genetic
algorithms: The set partitioning problem.Journal of
Heuristics, 4(4):323–357, June 1998.

[7] P. C. Chu and J. E. Beasley. A genetic algorithm for the
multidimensional knapsack problem.Journal of Heuristics,
4(1):63–86, December 1998.

[8] J. A. Clark, J. J. Dolado, M. Harman, R. M. Hierons,
B. Jones, M. Lumkin, B. S. Mitchell, S. Mancoridis, K. Rees,
M. Roper, and M. J. Shepperd. Formulating software
engineering as a search problem.IEE Proceedings -
Software, 150(3):161–175, 2003.

[9] E. J. Coffman, M. Garey, and D. Johnson. Approximation
algorithms for bin-packing.In Algorithm Design for
Computer System Design, 1984.

[10] L. Davis. Job-shop scheduling with genetic algorithms. In
International Conference on GAs, pages 136–140. Lawrence
Erlbaum, 1985.

[11] E. Falkenauer.Genetic Algorithms and Grouping Problems.
Wiley-Inter Science, Wiley - NY, 1998.

[12] E. Falkenauer.Genetic algorithms and grouping problems.
John Wiley and Sons, 1998.

[13] M. Garey and D. Johnson.Computers and Intractability: a
Guide to the Theory of NP-Completeness. W.H. Freeman,
1979.

[14] D. Goldberg.Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, 1989.

[15] D. Greer and G. Ruhe. Software release planning: an
evolutionary and iterative approach.Information and
Software Technology, 46(4):243–253, 2004.

[16] E. Hart, D. Corne, and P. Ross. The state of the art in
evolutionary scheduling.Genetic Programming and
Evolvable Machines, 2004 (to appear).

[17] J. H. Johnson. Identifying redundancy in source code using
fingerprints. InCASCON, pages 171–183, October 1993.

[18] J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of
methods for priorizing software requirements.Information
and Software Technology, 39:939–947, 1998.

[19] C. Kirsopp, M. Sheppard, and J. Hart. Search heuristics,
case-based reasoning and software project effort prediction.
In Proceedings of Genetic and Evolutionary Computation
Conference. Springer-Verlag, 2002.

[20] K. Kontogiannis, R. D. Mori, R. Bernstein, M. Galler, and
E. Merlo. Pattern matching for clone and concept detection.
Journal of Automated Software Engineering, March 1996.

[21] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. InProceedings of IEEE International
Conference on Software Maintenance, pages 244–253,
Monterey CA, Nov 1996.

[22] T. J. McCabe. Reverse engineering reusability redundancy:
the connection.American Programmer, 3:8–13, Oct 1990.

[23] E. Merlo, G. Antoniol, M. DiPenta, and F. Rollo. Linear
complexity object-oriented similarity for clone detection and
software evolution analysis. InProceedings of IEEE
International Conference on Software Maintenance, pages
412–416. IEEE Computer Society Press, 2004.

[24] M. Neteler, editor.GRASS 6.1 Programmer’s Manual.
Geographic Resources Analysis Support System.ITC-irst,
Italy, http://grass.itc.it/devel/ , 2005.

[25] G. R. Raidl. An improved genetic algorithm for the
multiconstrained 0–1 knapsack problem. InProceedings of
International Conference on Evolutionary Computation,
pages 207–211, 1998.

[26] J. D. Schaffer. Multiple objective optimization with vector
evaluated genetic algorithms. InProceedings of International
Conference on Genetic Algorithms and Their Applications,
pages 193–100, Pittsburgh, PAL, 1985.

[27] E. Talbi. Métaheuristiques pour l’optimisation combinatoire
muli-objectif : État de l’art. TR 98-757.33, Laboratoire
d’Informatique Fondamentale de Lille, Université des
Sciences et Technologies de Lille, 2001.

1892

